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Abstract. The results of a high accuracy numerical study of the uniformity of the electric 
field between parallel disc electrodes are reported. Simple analytical expressions are derived 
describing the field behaviour at points on the electrodes near the edges of the discs and 
also at points between the electrodes remote from the edges. These expressions are 
consistent with the numerical results. A simple approximation for the fringing capacitance 
of parallel-plate electrode systems of arbitrary shape is also given. This expression leads 
to a first-order approximation for the total capacitance which, for disc electrodes, has 
superior accuracy to similar published approximations for radii up to five times the disc 
separation. A higher-order approximation for the capacitance is shown to have markedly 
better accuracy than any first-order approximation. 

1. Introduction 

In electrostatic problems involving unguarded parallel-plate electrodes, the interelec- 
trode electric field departs from uniformity, especially near the plate edges, and extends 
into space beyond the electrodes. These departures from ideal uniform field behaviour 
are often referred to as ‘fringing’, and for certain applications are highly significant. 
For example, the elementary expression for the capacitance of parallel-plate capacitors 
( Celem = &A/d with E the dielectric constant, A the plate area and d the plate separation) 
underestimates the true capacitance because it ignores the fringing field. Fringing 
effects are also important in systems designed to achieve highly uniform fields. An 
example is an electrometer constructed as an absolute standard of voltage, in which 
it is necessary to achieve a field non-uniformity not exceeding one part in lo7 (Sloggett 
et a1 1984). This instrument has essentially a disc and plane electrode geometry as 
shown in figure 1, and is equivalent, by the principle of images, to two coaxial discs. 
The region in which high field uniformity is required lies within a small radius of the 
axis of symmetry. 

In the last hundred years, a number of authors have given calculations for the 
potential distribution between disc electrodes at equal or opposite potential. The most 
comprehensive work is due to Nicholson (1924) and Love (1949) who used an expansion 
for the potential in terms of oblate spheroidal coordinates. The boundary condition 
on the discs gives rise to a Fredholm integral equation of the second kind which was 
solved iteratively by Bartlett and Corle (1985). Bartlett and Corle confirmed their 
solution by a separate numerical procedure based upon finite differences. In other 
work, Atkinson et a1 (1983) claimed to have solved the potential problem by a Hankel 
transform technique, although Hughes (1984) pointed out that their method was in 
error as it did not give a continuously differentiable solution. 
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Figure 1. Geometry of disc and plane electrode system. A, disc electrode (4  = V ) ;  B, 
plane electrode (4 = 0); C, image electrode (4 = - V). 

The published literature provides little quantitative information on the field unifor- 
mity. For this purpose, an evaluation of the potential distribution to a very much 
higher accuracy than that obtained by Bartlett and Corle is required. Such an evaluation 
has been carried out by Harrison (1967) for various electrode profiles designed for 
electrical discharge studies. In this paper, we present the results of a numerical 
investigation of field uniformity for the flat electrode geometry of figure 1. We also 
provide analytical confirmation of some key numerical results, and study analytically 
the behaviour of the capacitance due to fringing fields. 

2. Numerical investigation of the disc-plane potential problem 

The axisymmetric electric potential 4 satisfies Laplace’s equation 

a2+ 1 a +  a24 
ar2 r ar  ay2-O 
-+--+-- 

in which (r, 4, y)  are the usual cylindrical polar coordinates. Standard algorithms 
(see, for example, DiStasio and McHams 1979) based on Jacobi iteration were used 
to evaluate + at a grid of points (iAr, j A y ) ,  where Ar and Ay are grid increments in 
the radial and vertical directions respectively. For the geometry of figure 1, we solved 
for y 2 0  and r 2  0 with the boundary conditions 

4 = V  
4 = 0  fory=O 

for y = d and r s  R 

and 

for r = 0. a4 -=o  
ar (4) 
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The last condition results from axial symmetry. For computational purposes, we 
introduced outer boundaries r = ro and y = y o  as shown in figure 1, and set 4 = 0 on 
both boundaries. 

The radial and vertical components of the electric field, denoted E, and Ey respec- 
tively, were calculated directly from the array of potentials. These are most usefully 
expressed in normalised form: 

and 
E,  = Ed/ V ( 5 )  

= Eyd/  V .  ( 6 )  

The non-uniformity of the field in the interelectrode region has two components, 
namely the radial, which is just E,, and the vertical, a y ,  which is given by 

ay = Ey - 1 .  ( 7 )  
The principal computational goal was to evaluate field non-uniformities as small as 
lo-' to an accuracy of 3% or better. Thus double precision accuracy was required in 
computing the potentials. Parameters ro,  y o ,  Ar and Ay were chosen to minimise the 
size of the potential array consistent with the accuracy goal. Preliminary trials estab- 
lished the following values for a given electrode radius R and separation d :  

r o =  R + l O d  

y 0 = 5 d  

A r = d / l O  

Ay = d / 2 0 .  

( 8 )  

As an example, for R l d  = 10 the array size was 201 x 101 points. 
Preliminary convergence tests using over-relaxation were found to give oscillatory 

non-convergent behaviour. This may be a consequence of the zero thickness of the 
disc electrode. DiStasio and McHarris (1979) suggest that a requirement for accelerated 
convergence is that the grid increments be smaller than the smallest linear dimension 
of the electrode geometry, a condition not met in the present case. Thus an acceleration 
factor of unity was used, and convergence was found to be slow. Ultimately, 2200 
iterations were performed for each run and comparisons were made with the result 
after 2000 iterations to confirm accuracy. This number of iterations was sufficient to 
evaluate field non-uniformities as small as lo-'', and the required accuracy was achieved 
at all points other than within one or two grid increments of the edge of the disc. 

Potentials and fields were computed for values of R l d  from 2 to 20. Representative 
results, for R l d  = 8, are shown in the form of interpolated contour maps in figure 2. 
The equipotentials (figure 2( a ) )  show the influence of fringing at the edge of the upper 
electrode and are comparable with the results of Bartlett and Corle (1985). 

Contours of equal vertical field non-uniformity, ay, are shown in figure 2 ( b ) .  It 
may be seen that, at points more than one or two multiples of d in from the edge of 
the disc, the field non-uniformity penetrates in a regular and exponentially decreasing 
manner into the gap. For a given radius, extrema of field non-uniformity occur on 
the electrodes, with maxima (i.e. points of maximum field magnitude) on the disc 
electrode and minima on the plane electrode. The normalised radial field (figure 2( c ) )  
also shows exponential decay with penetration into the gap, but exhibits a maximum 
for a given radius at a point midway between the electrodes. The radial field is directed 
outwards for V >  0. 
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Figure 2. Contour plots of numerical results for disc and plane electrodes, R / d  = 8: ( a )  
equipotentials at 0.1 V increments, ( b )  non-uniformity of vertical field 6, and (c )  normalised 
radial field E,. 
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r l d  

Figure 3. Computed vertical field non-uniformity 8, on disc and plane electrodes for R / d  
values of 2-20. 8, has positive sign on the disc (full curve), and negative sign on the plane 
(broken curve). 

Figure 3 shows the behaviour of I6,,l on both electrodes for a range of values of 
R / d .  The region of exponential decay is seen to correspond, approximately, to 
d < r < R - d, and the rate of decay is 1.34 decades per unit reduction in r l d  for 
R l d  = 20. The vertical field non-uniformity has a singularity at the edge of the disc 
electrode, and tends to -1 (since E,, + 0) as r + 00 on the plane electrode. At r = 0 on 
either electrode the field non-uniformity attains a minimum value given by the empirical 
law 

(9) 
Figure 3 permits the straightforward assessment of maximum field non-uniformity 

in any problem having the geometry of figure 1. In the case of the absolute volt 
apparatus, for example, the minimum value of R / d  is 9.7. Over the critical central 
region, corresponding to r l d  < 1.1, we find that IS,[ < 2  x several orders of 
magnitude below the experimental requirement. 

p,,l = 2.57 x 1 0 - l . ~ ~ ~ ’ ~ .  

3. Theoretical analysis 

In this section, we derive theoretical results for the potential near the edge of the disc 
electrode for the case when R l d  is large. The results are based on the approximation 
of the edge of the disc electrode by a semi-infinite straight-edged plane. The potential 
problem in this geometry becomes two-dimensional (see figure 4(a)) and, as first shown 
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Figure 4. Two-dimensional electrode geometry in (a )  the z plane, z = x + iy, and ( b )  the 
w plane, w = u+iv. 

by Maxwell (1904), may be treated by conformal mapping methods. From Kober 
(1957), the upper half of the complex z plane (z = x+iy)  in figure 4(a) is mapped to 
the upper half of the complex w plane (w = U + i u )  by the Schwarz-Christoffel confor- 
mal map 

z = w + a In w (10) 
where a = d / r .  The electrode system ABCDE in the z plane maps to the points 
AB’C’D’E’ on the real axis of the w plane (figure 4( b)). In the w plane, the upper 
half-plane problem is to solve Laplace’s equation subject to the boundary conditions 

and, by standard arguments (see, e.g., Carrier et a1 1966), the solution is 

or 
V v v  

+(U, u )  = - tan-’ - = - Im(1n w ) .  
7r u r  

Now the electric field components are given by evaluating a+/ax and a+/ay as 
follows. Define G = ( V /  r )  In w ;  then 

-=Im(--)=Im(~)=Im(-(-) a4 dG d G  d G  dz -’ ) 
ax dw dw 
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*- ay -1m (::) - = I m  ( i- 2) =Re(%) = R e ( g ( g ) - ' ) ,  

Since dz/dw = ( w  + a ) /  w, we have that 

In the case of points on the electrodes we have U = 0, from which it follows that E, 
vanishes, as expected, and 

V 
Ey = 

n ( u + a ) '  

We now interpret these results in our original (x, y )  coordinate system. For points 
on the underside of the upper electrode and near to its edge B, we may write 

z = a(ln a - 1 - i r ) -  t (15a) 
and 

w = U = - a + s  

where s and t are real and positive and t measures distance from the edge of the 
electrode. Substituting in equation (10) and expanding the In term, we find that, for 
small s and t ,  

s = (2at)'l2 (16) 
and, from equation (14), 

This equation describes the singular behaviour of Ey near the edge of a disc of large 
radius. 

Points which are between the electrodes and remote from the edge correspond to 
w near 0 in figure 4(b) .  For IwI sufficiently small, equation (10) gives 

(cos;+ i sin - a '> ez /a  = e x / a  Y 

and equations (13a) and (136) therefore give 

Y sin - 
a 

Finally, making the substitutions a = d / r  and x = a(ln a - 1) - t ,  where t is again the 
distance from the edge of the upper electrode, it follows that the field non-uniformities 
are 

6, = -exp[ -( 1 + rt/ d ) ]  sin ~ y /  d (20a) 
6,=-exp[- ( l+~t /d) ]cos  r y / d .  (20b)  
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These equations describe the behaviour seen in figures 2( b )  and 2( c) for points between 
the electrodes and not too near the edge of the disc. At points on the electrodes IS,l 
takes its maximum value for a given value of t, 

lSyl = e x p [ - ( l + ~ t / d ) ] = ~ l O - ' . ~ ~ ~ ~ ~ ~  e 

ISXI takes the same maximum value, but at y = d/2. 
Some representative data calculated from equation (21) are given in table 1 ,  together 

with corresponding numerical data for disc electrodes of two different radii. It may 
be seen that, at a given distance from the edge of the disc, ISy[  increases slowly as disc 
radius decreases. This seems physically reasonable since a reduction in the disc radius 
will tend to bring the edge nearer, on average, to any point at a fixed radial distance 
t from it. The table shows that, as an approximation to the behaviour of field 
non-uniformity on disc electrodes, equation (21) is best for large values of R/d and 
small values of t / d .  The rate of decrease of field non-uniformity with increasing t 
given by equation (21) (1.364 decades per multiple of d )  slightly underestimates the 
rate for disc electrodes. Examination of the numerical results shows that, in this respect 
also, equation (21) is a better model for discs of large radius than for discs of small 
radius. 

Table 1. Values of 18)l on disc electrodes of various radii. Data for R / d  = 10 and R / d  = 20 
are obtained numerically; data for R / d  =CO from equation (21). 

t /d R / d = l O  R / d  = 20 R l d  =m 

2 8 . 5 8 ~  1 0 - ~  7.88 x 1 0 - ~  6.87 x 1 0 - ~  

6 4.61 X10-9 3.38 x 1 0 - ~  2.40 x 1 0 - ~  
8 1 . 3 0 ~  lo-" 7 . 2 0 ~  4.47 x 10-12 

4 1.92x10+ 1.62 x 1.28 x 

4. Capacitance 

We may use the above analysis to study the fringing capacitance and hence the total 
capacitance of parallel-plate electrodes. Fringing capacitance is defined as the addi- 
tional capacitance beyond that which would be expected if the field were uniform and 
equal to V l d  between the electrodes, and zero elsewhere, i.e. the capacitance given 
by the elementary approximation mentioned in 0 1 .  

Capacitance is given by an integral of charge density U over the area of either plate: 

c = L  V Jud ,4 .  

Since the charge density on a conducting surface is proportional to the field strength 
perpendicular to it, for the geometry of figure 4(a) the capacitance per unit length in 
the direction parallel to the edge of the upper electrode is given by 

where E is the dielectric constant of the medium. 



Fringing fields in disc capacitors 2733 

Consider first the fringing capacitance due to excess charge on the lower side of 
the upper electrode. This is given by 

acL=L a1 v 1; ( E y - $ )  dx. 

If we put w = -p with p real and positive, we obtain, from equation ( lo) ,  

dx = ( T) a - p  dp 

and, from equation (14), 

V 
Ey = 

- P)' 
Substitution in equation (24) yields 

Interestingly, this result is independent of any dimension of the electrode geometry 
other than the length of the perimeter. The numerical value of equation (27) in vacuum 
or air is 2.82 pF m-'. 

We turn now to the second component of fringing capacitance for the geometry 
of figure 4( a) ,  that due to charge on the upper surface of the bounded electrode. This 
may be written 

A ".=+I. a1 (Ey-0)dx  

and, repeating the above substitutions, we obtain 

ac, E P lim ln- 
a1 TP- a 

-=- 

which is unbounded. Clearly this cannot represent the fringing capacitance of any 
electrode of finite dimensions. The integral diverges at the point A because, as may 
be readily shown, Ey varies as x-' as x +  -CO. For any electrode of finite extent, the 
upper fringing capacitance will be more correctly, though only approximately, 
represented by 

ac, E 

a1 T 
-- --In T P l d  

where P is a dimension characteristic of the width of the electrode, for example the 
diameter of a disc. The total fringing capacitance, Cr, is then given by 

E L  TeP  Cr=-ln- 
~d 

where L is the length of perimeter of the bounded electrode. For P l d  = 10 the fringing 
capacitance is 12.5 pF per metre of perimeter, and increases by 6.5 pFm-'  for each 
decade increase in P ld .  Uncertainty in defining and estimating the parameter P 
imposes a limitation on the utility of equation (31), particularly for electrodes of 
irregular shape. A factor of two error in P, for example, will introduce an error of 
2.0 pF m-' in Cf. 
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For a disc capacitor of radius R equation (31) leads to a simple first-order 
approximation to the actual capacitance C: 

where Celem = m R 2 / d  is the elementary capacitance calculated from the uniform field 
model. The literature contains several such first-order estimates of C, derived in various 
ways, but quite similar in form. A convenient summary is given by Sneddon (1966). 
In the notation of this paper, they include the expression due to Kirchhoff (1877) and 
more rigorously derived by Hutson (1963): 

a modification of equation (33)  proposed by Ignatowsky (1932): 

C=Celem 1+-ln- ( i: 'e2:) (34) 

and an approximation given by Cooke (1958) based on an idea of Maxwell (1866): 

The notation in these expressions is consistent with that used throughout this paper 
in that d denotes the distance between a disc and a plane. The expressions may be 
applied to two-disc electrode systems by taking the electrode separation as 2d. 

The values given by equations (32)-(35) may be compared with precise numerical 
data given by Cooke (1958) and Bartlett and Corle (1985); the results are plotted in 
figure 5 t .  It will be seen that, of the first-order approximations, equation (32) generally 
gives the best results, although not necessarily for larger R/d. All four estimates are 
asymptotically correct for large R / d  since C/Celem+ 1 as R / d  + a. 

None of the first-order estimates is satisfactory for R / d  less than about 4 and 
approximations differing in form from equations (32)-(35) are required in this case. 
Leppington and Levine (1970) and Shaw (1970) have given approximations which 
improve on the Kirchhoff -Hutson expression by the inclusion of higher-order terms, 
while Sneddon (1966) has given a closed-form expression whose accuracy is good for 
small, but not large, R/d. Empirically we have found that the expression 

2 2d 8rrR 
rrR ed (T: 8 f R )  

-- -l+-ln-+ -1n- C 
Celem 

gives good accuracy down to quite small disc radii. Equation (36) is obtained by 
deleting from the full second-order approximation of Shaw (1970) a term in (d/R)' 
whose coefficient, labelled C(3) by Shaw, involves a definite integralS. The error of 
equation (36) is plotted in figure 5, where its superiority to any of the first-order 
approximations is readily apparent. 

t It should be noted that the values tabulated by Cooke (1958) and quoted by Sneddon (1966) for the 
Maxwell-Cooke method are not derived from equation (35).  They are calculated from a more exact equation 
of transcendental type, not in closed form, which approximates to equation (35) for large R / d .  Also the 
values given by Sneddon for the Kirchhoff-Hutson method appear to be erroneous and considerably 
underestimate the error of equation (33).  
$ We suspect, on the basis of an unsuccessful attempt at numerical evaluation, that this integral may not exist. 
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R l d  

Figure 5. Errors in estimates of the capacitance of disc capacitors compared with numerical 
data of Bartlett and Corle (1985) for R / d  = 6 and Cooke (1958) for all other points: A, 
Maxwell-Cooke; B, Kirchhoff -Hutson; C, Ignatowsky; D, equation (32); E, equation (36). 
Here d denotes the electrode separation for a disc and plane system, or half the electrode 
separation for a two-disc system. 
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